extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×Q8)⋊1C22 = D12.36D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):1C2^2 | 192,605 |
(C6×Q8)⋊2C22 = C42⋊7D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):2C2^2 | 192,620 |
(C6×Q8)⋊3C22 = D6⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):3C2^2 | 192,728 |
(C6×Q8)⋊4C22 = D12.39D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8):4C2^2 | 192,761 |
(C6×Q8)⋊5C22 = S3×C22⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):5C2^2 | 192,1185 |
(C6×Q8)⋊6C22 = C4⋊C4⋊26D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):6C2^2 | 192,1186 |
(C6×Q8)⋊7C22 = D12⋊21D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):7C2^2 | 192,1189 |
(C6×Q8)⋊8C22 = C6.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):8C2^2 | 192,1193 |
(C6×Q8)⋊9C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):9C2^2 | 192,1196 |
(C6×Q8)⋊10C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):10C2^2 | 192,1203 |
(C6×Q8)⋊11C22 = S3×C4.4D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):11C2^2 | 192,1232 |
(C6×Q8)⋊12C22 = C42⋊20D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):12C2^2 | 192,1233 |
(C6×Q8)⋊13C22 = D12⋊10D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):13C2^2 | 192,1235 |
(C6×Q8)⋊14C22 = C42⋊22D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):14C2^2 | 192,1237 |
(C6×Q8)⋊15C22 = C42⋊23D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):15C2^2 | 192,1238 |
(C6×Q8)⋊16C22 = C42⋊24D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):16C2^2 | 192,1242 |
(C6×Q8)⋊17C22 = C2×S3×SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):17C2^2 | 192,1317 |
(C6×Q8)⋊18C22 = C2×Q8⋊3D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):18C2^2 | 192,1318 |
(C6×Q8)⋊19C22 = SD16⋊13D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):19C2^2 | 192,1321 |
(C6×Q8)⋊20C22 = S3×C8.C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8):20C2^2 | 192,1335 |
(C6×Q8)⋊21C22 = D24⋊C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8):21C2^2 | 192,1336 |
(C6×Q8)⋊22C22 = C24.C23 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8):22C2^2 | 192,1337 |
(C6×Q8)⋊23C22 = D12.34C23 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8):23C2^2 | 192,1396 |
(C6×Q8)⋊24C22 = S3×2- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8):24C2^2 | 192,1526 |
(C6×Q8)⋊25C22 = D12.39C23 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8):25C2^2 | 192,1527 |
(C6×Q8)⋊26C22 = C3×C22⋊SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):26C2^2 | 192,883 |
(C6×Q8)⋊27C22 = C3×D4.9D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):27C2^2 | 192,888 |
(C6×Q8)⋊28C22 = C3×C22.32C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):28C2^2 | 192,1427 |
(C6×Q8)⋊29C22 = C3×C23⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):29C2^2 | 192,1432 |
(C6×Q8)⋊30C22 = C3×C22.45C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):30C2^2 | 192,1440 |
(C6×Q8)⋊31C22 = C3×C24⋊C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | | (C6xQ8):31C2^2 | 192,1450 |
(C6×Q8)⋊32C22 = C3×D4○SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):32C2^2 | 192,1466 |
(C6×Q8)⋊33C22 = C22×Q8⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):33C2^2 | 192,1366 |
(C6×Q8)⋊34C22 = C2×Q8.11D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):34C2^2 | 192,1367 |
(C6×Q8)⋊35C22 = C2×D6⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):35C2^2 | 192,1372 |
(C6×Q8)⋊36C22 = C2×C12.23D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):36C2^2 | 192,1373 |
(C6×Q8)⋊37C22 = C2×D4⋊D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):37C2^2 | 192,1379 |
(C6×Q8)⋊38C22 = C12.C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):38C2^2 | 192,1381 |
(C6×Q8)⋊39C22 = (C2×D4)⋊43D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):39C2^2 | 192,1387 |
(C6×Q8)⋊40C22 = C6.1452+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):40C2^2 | 192,1388 |
(C6×Q8)⋊41C22 = C6.1462+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):41C2^2 | 192,1389 |
(C6×Q8)⋊42C22 = C22×S3×Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):42C2^2 | 192,1517 |
(C6×Q8)⋊43C22 = C22×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):43C2^2 | 192,1518 |
(C6×Q8)⋊44C22 = C2×Q8.15D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):44C2^2 | 192,1519 |
(C6×Q8)⋊45C22 = C2×S3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):45C2^2 | 192,1520 |
(C6×Q8)⋊46C22 = C2×D4○D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):46C2^2 | 192,1521 |
(C6×Q8)⋊47C22 = C6.C25 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):47C2^2 | 192,1523 |
(C6×Q8)⋊48C22 = C6×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):48C2^2 | 192,1412 |
(C6×Q8)⋊49C22 = C3×C22.19C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):49C2^2 | 192,1414 |
(C6×Q8)⋊50C22 = C6×C4.4D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):50C2^2 | 192,1415 |
(C6×Q8)⋊51C22 = C3×C22.29C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):51C2^2 | 192,1424 |
(C6×Q8)⋊52C22 = C3×D4⋊5D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):52C2^2 | 192,1435 |
(C6×Q8)⋊53C22 = C2×C6×SD16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):53C2^2 | 192,1459 |
(C6×Q8)⋊54C22 = C6×C8⋊C22 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | | (C6xQ8):54C2^2 | 192,1462 |
(C6×Q8)⋊55C22 = C6×C8.C22 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):55C2^2 | 192,1463 |
(C6×Q8)⋊56C22 = C3×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):56C2^2 | 192,1464 |
(C6×Q8)⋊57C22 = C6×2- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8):57C2^2 | 192,1535 |
(C6×Q8)⋊58C22 = C3×C2.C25 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8):58C2^2 | 192,1536 |
(C6×Q8)⋊59C22 = C2×C6×C4○D4 | φ: trivial image | 96 | | (C6xQ8):59C2^2 | 192,1533 |
(C6×Q8)⋊60C22 = C6×2+ 1+4 | φ: trivial image | 48 | | (C6xQ8):60C2^2 | 192,1534 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×Q8).1C22 = (C2×C4).D12 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).1C2^2 | 192,36 |
(C6×Q8).2C22 = (C2×C12).D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8).2C2^2 | 192,37 |
(C6×Q8).3C22 = C42.Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).3C2^2 | 192,101 |
(C6×Q8).4C22 = C42.3Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).4C2^2 | 192,107 |
(C6×Q8).5C22 = S3×C4.10D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8).5C2^2 | 192,309 |
(C6×Q8).6C22 = M4(2).21D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).6C2^2 | 192,310 |
(C6×Q8).7C22 = D12.4D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8).7C2^2 | 192,311 |
(C6×Q8).8C22 = D12.5D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).8C2^2 | 192,312 |
(C6×Q8).9C22 = D12.6D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).9C2^2 | 192,313 |
(C6×Q8).10C22 = D12.7D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 8- | (C6xQ8).10C2^2 | 192,314 |
(C6×Q8).11C22 = Dic3⋊7SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).11C2^2 | 192,347 |
(C6×Q8).12C22 = C3⋊Q16⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).12C2^2 | 192,348 |
(C6×Q8).13C22 = Dic3⋊4Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).13C2^2 | 192,349 |
(C6×Q8).14C22 = Q8⋊2Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).14C2^2 | 192,350 |
(C6×Q8).15C22 = Dic3.1Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).15C2^2 | 192,351 |
(C6×Q8).16C22 = Q8⋊3Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).16C2^2 | 192,352 |
(C6×Q8).17C22 = (C2×C8).D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).17C2^2 | 192,353 |
(C6×Q8).18C22 = Dic3⋊Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).18C2^2 | 192,354 |
(C6×Q8).19C22 = Q8.3Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).19C2^2 | 192,355 |
(C6×Q8).20C22 = (C2×Q8).36D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).20C2^2 | 192,356 |
(C6×Q8).21C22 = Dic6.11D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).21C2^2 | 192,357 |
(C6×Q8).22C22 = Q8.4Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).22C2^2 | 192,358 |
(C6×Q8).23C22 = Q8⋊C4⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).23C2^2 | 192,359 |
(C6×Q8).24C22 = S3×Q8⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).24C2^2 | 192,360 |
(C6×Q8).25C22 = (S3×Q8)⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).25C2^2 | 192,361 |
(C6×Q8).26C22 = Q8⋊7(C4×S3) | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).26C2^2 | 192,362 |
(C6×Q8).27C22 = C4⋊C4.150D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).27C2^2 | 192,363 |
(C6×Q8).28C22 = D6.1SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).28C2^2 | 192,364 |
(C6×Q8).29C22 = Q8⋊3D12 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).29C2^2 | 192,365 |
(C6×Q8).30C22 = D6⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).30C2^2 | 192,366 |
(C6×Q8).31C22 = Q8.11D12 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).31C2^2 | 192,367 |
(C6×Q8).32C22 = D6⋊Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).32C2^2 | 192,368 |
(C6×Q8).33C22 = Q8⋊4D12 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).33C2^2 | 192,369 |
(C6×Q8).34C22 = D6.Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).34C2^2 | 192,370 |
(C6×Q8).35C22 = C3⋊(C8⋊D4) | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).35C2^2 | 192,371 |
(C6×Q8).36C22 = D6⋊1Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).36C2^2 | 192,372 |
(C6×Q8).37C22 = D6⋊C8.C2 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).37C2^2 | 192,373 |
(C6×Q8).38C22 = C8⋊Dic3⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).38C2^2 | 192,374 |
(C6×Q8).39C22 = C3⋊C8.D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).39C2^2 | 192,375 |
(C6×Q8).40C22 = Q8⋊3(C4×S3) | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).40C2^2 | 192,376 |
(C6×Q8).41C22 = Dic3⋊SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).41C2^2 | 192,377 |
(C6×Q8).42C22 = D12.12D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).42C2^2 | 192,378 |
(C6×Q8).43C22 = (C2×Q8).49D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).43C2^2 | 192,602 |
(C6×Q8).44C22 = (C2×C6).Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).44C2^2 | 192,603 |
(C6×Q8).45C22 = (C2×Q8).51D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).45C2^2 | 192,604 |
(C6×Q8).46C22 = D12.37D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).46C2^2 | 192,606 |
(C6×Q8).47C22 = C3⋊C8⋊24D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).47C2^2 | 192,607 |
(C6×Q8).48C22 = C3⋊C8⋊6D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).48C2^2 | 192,608 |
(C6×Q8).49C22 = Dic6.37D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).49C2^2 | 192,609 |
(C6×Q8).50C22 = C3⋊C8.29D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).50C2^2 | 192,610 |
(C6×Q8).51C22 = C3⋊C8.6D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).51C2^2 | 192,611 |
(C6×Q8).52C22 = C42.61D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).52C2^2 | 192,613 |
(C6×Q8).53C22 = C42.62D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).53C2^2 | 192,614 |
(C6×Q8).54C22 = C42.213D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).54C2^2 | 192,615 |
(C6×Q8).55C22 = D12.23D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).55C2^2 | 192,616 |
(C6×Q8).56C22 = C42.64D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).56C2^2 | 192,617 |
(C6×Q8).57C22 = C42.214D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).57C2^2 | 192,618 |
(C6×Q8).58C22 = C42.65D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).58C2^2 | 192,619 |
(C6×Q8).59C22 = D12.14D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).59C2^2 | 192,621 |
(C6×Q8).60C22 = C12.9Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).60C2^2 | 192,638 |
(C6×Q8).61C22 = C42.77D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).61C2^2 | 192,641 |
(C6×Q8).62C22 = C12⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).62C2^2 | 192,642 |
(C6×Q8).63C22 = C12⋊6SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).63C2^2 | 192,644 |
(C6×Q8).64C22 = C42.80D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).64C2^2 | 192,645 |
(C6×Q8).65C22 = C12⋊Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).65C2^2 | 192,649 |
(C6×Q8).66C22 = C12⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).66C2^2 | 192,651 |
(C6×Q8).67C22 = D12.15D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).67C2^2 | 192,654 |
(C6×Q8).68C22 = Dic3×SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).68C2^2 | 192,720 |
(C6×Q8).69C22 = Dic3⋊3SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).69C2^2 | 192,721 |
(C6×Q8).70C22 = Dic3⋊5SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).70C2^2 | 192,722 |
(C6×Q8).71C22 = SD16⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).71C2^2 | 192,723 |
(C6×Q8).72C22 = (C3×D4).D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).72C2^2 | 192,724 |
(C6×Q8).73C22 = (C3×Q8).D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).73C2^2 | 192,725 |
(C6×Q8).74C22 = C24.31D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).74C2^2 | 192,726 |
(C6×Q8).75C22 = C24.43D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).75C2^2 | 192,727 |
(C6×Q8).76C22 = D6⋊8SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).76C2^2 | 192,729 |
(C6×Q8).77C22 = C24⋊14D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).77C2^2 | 192,730 |
(C6×Q8).78C22 = D12⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).78C2^2 | 192,731 |
(C6×Q8).79C22 = Dic6.16D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).79C2^2 | 192,732 |
(C6×Q8).80C22 = C24⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).80C2^2 | 192,733 |
(C6×Q8).81C22 = C24⋊15D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).81C2^2 | 192,734 |
(C6×Q8).82C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).82C2^2 | 192,735 |
(C6×Q8).83C22 = C24.44D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).83C2^2 | 192,736 |
(C6×Q8).84C22 = Dic3×Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).84C2^2 | 192,740 |
(C6×Q8).85C22 = Dic3⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).85C2^2 | 192,741 |
(C6×Q8).86C22 = C24.26D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).86C2^2 | 192,742 |
(C6×Q8).87C22 = Q16⋊Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).87C2^2 | 192,743 |
(C6×Q8).88C22 = (C2×Q16)⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).88C2^2 | 192,744 |
(C6×Q8).89C22 = D6⋊5Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).89C2^2 | 192,745 |
(C6×Q8).90C22 = D12.17D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).90C2^2 | 192,746 |
(C6×Q8).91C22 = D6⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).91C2^2 | 192,747 |
(C6×Q8).92C22 = C24.36D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).92C2^2 | 192,748 |
(C6×Q8).93C22 = C24.37D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).93C2^2 | 192,749 |
(C6×Q8).94C22 = C24.28D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).94C2^2 | 192,750 |
(C6×Q8).95C22 = C24.29D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 4 | (C6xQ8).95C2^2 | 192,751 |
(C6×Q8).96C22 = M4(2).15D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).96C2^2 | 192,762 |
(C6×Q8).97C22 = M4(2).16D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 8- | (C6xQ8).97C2^2 | 192,763 |
(C6×Q8).98C22 = D12.40D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8).98C2^2 | 192,764 |
(C6×Q8).99C22 = 2- 1+4⋊4S3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8+ | (C6xQ8).99C2^2 | 192,804 |
(C6×Q8).100C22 = 2- 1+4.2S3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 8- | (C6xQ8).100C2^2 | 192,805 |
(C6×Q8).101C22 = (Q8×Dic3)⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).101C2^2 | 192,1181 |
(C6×Q8).102C22 = C6.752- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).102C2^2 | 192,1182 |
(C6×Q8).103C22 = C4⋊C4.187D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).103C2^2 | 192,1183 |
(C6×Q8).104C22 = C6.152- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).104C2^2 | 192,1184 |
(C6×Q8).105C22 = C6.162- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).105C2^2 | 192,1187 |
(C6×Q8).106C22 = C6.172- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).106C2^2 | 192,1188 |
(C6×Q8).107C22 = D12⋊22D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).107C2^2 | 192,1190 |
(C6×Q8).108C22 = Dic6⋊21D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).108C2^2 | 192,1191 |
(C6×Q8).109C22 = Dic6⋊22D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).109C2^2 | 192,1192 |
(C6×Q8).110C22 = C6.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).110C2^2 | 192,1194 |
(C6×Q8).111C22 = C6.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).111C2^2 | 192,1195 |
(C6×Q8).112C22 = C6.202- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).112C2^2 | 192,1197 |
(C6×Q8).113C22 = C6.212- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).113C2^2 | 192,1198 |
(C6×Q8).114C22 = C6.222- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).114C2^2 | 192,1199 |
(C6×Q8).115C22 = C6.232- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).115C2^2 | 192,1200 |
(C6×Q8).116C22 = C6.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).116C2^2 | 192,1201 |
(C6×Q8).117C22 = C6.242- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).117C2^2 | 192,1202 |
(C6×Q8).118C22 = C6.782- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).118C2^2 | 192,1204 |
(C6×Q8).119C22 = C6.252- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).119C2^2 | 192,1205 |
(C6×Q8).120C22 = C6.592+ 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).120C2^2 | 192,1206 |
(C6×Q8).121C22 = C42.233D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).121C2^2 | 192,1227 |
(C6×Q8).122C22 = C42.137D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).122C2^2 | 192,1228 |
(C6×Q8).123C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).123C2^2 | 192,1229 |
(C6×Q8).124C22 = C42.139D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).124C2^2 | 192,1230 |
(C6×Q8).125C22 = C42.140D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).125C2^2 | 192,1231 |
(C6×Q8).126C22 = C42.141D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).126C2^2 | 192,1234 |
(C6×Q8).127C22 = Dic6⋊10D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).127C2^2 | 192,1236 |
(C6×Q8).128C22 = C42.234D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).128C2^2 | 192,1239 |
(C6×Q8).129C22 = C42.143D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).129C2^2 | 192,1240 |
(C6×Q8).130C22 = C42.144D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).130C2^2 | 192,1241 |
(C6×Q8).131C22 = C42.145D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).131C2^2 | 192,1243 |
(C6×Q8).132C22 = Dic6⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).132C2^2 | 192,1280 |
(C6×Q8).133C22 = Dic6⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).133C2^2 | 192,1281 |
(C6×Q8).134C22 = S3×C4⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).134C2^2 | 192,1282 |
(C6×Q8).135C22 = C42.171D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).135C2^2 | 192,1283 |
(C6×Q8).136C22 = C42.240D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).136C2^2 | 192,1284 |
(C6×Q8).137C22 = D12⋊12D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).137C2^2 | 192,1285 |
(C6×Q8).138C22 = D12⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).138C2^2 | 192,1286 |
(C6×Q8).139C22 = C42.241D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).139C2^2 | 192,1287 |
(C6×Q8).140C22 = C42.174D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).140C2^2 | 192,1288 |
(C6×Q8).141C22 = D12⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).141C2^2 | 192,1289 |
(C6×Q8).142C22 = C42.176D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).142C2^2 | 192,1290 |
(C6×Q8).143C22 = C42.177D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).143C2^2 | 192,1291 |
(C6×Q8).144C22 = C42.178D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).144C2^2 | 192,1292 |
(C6×Q8).145C22 = C42.179D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).145C2^2 | 192,1293 |
(C6×Q8).146C22 = C42.180D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).146C2^2 | 192,1294 |
(C6×Q8).147C22 = C2×D4.D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).147C2^2 | 192,1319 |
(C6×Q8).148C22 = C2×Q8.7D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).148C2^2 | 192,1320 |
(C6×Q8).149C22 = C2×S3×Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).149C2^2 | 192,1322 |
(C6×Q8).150C22 = C2×Q16⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).150C2^2 | 192,1323 |
(C6×Q8).151C22 = C2×D24⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).151C2^2 | 192,1324 |
(C6×Q8).152C22 = D12.30D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 4 | (C6xQ8).152C2^2 | 192,1325 |
(C6×Q8).153C22 = SD16.D6 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 8- | (C6xQ8).153C2^2 | 192,1338 |
(C6×Q8).154C22 = D12.35C23 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 8- | (C6xQ8).154C2^2 | 192,1397 |
(C6×Q8).155C22 = C3×C42.C4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).155C2^2 | 192,161 |
(C6×Q8).156C22 = C3×C42.3C4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).156C2^2 | 192,162 |
(C6×Q8).157C22 = C3×D4.8D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).157C2^2 | 192,887 |
(C6×Q8).158C22 = C3×D4.10D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).158C2^2 | 192,889 |
(C6×Q8).159C22 = C3×D4.D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).159C2^2 | 192,894 |
(C6×Q8).160C22 = C3×C4⋊2Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).160C2^2 | 192,895 |
(C6×Q8).161C22 = C3×D4.2D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).161C2^2 | 192,896 |
(C6×Q8).162C22 = C3×Q8.D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).162C2^2 | 192,897 |
(C6×Q8).163C22 = C3×C8⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).163C2^2 | 192,898 |
(C6×Q8).164C22 = C3×C8.18D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).164C2^2 | 192,900 |
(C6×Q8).165C22 = C3×C8⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).165C2^2 | 192,901 |
(C6×Q8).166C22 = C3×C8.D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).166C2^2 | 192,903 |
(C6×Q8).167C22 = C3×D4.3D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).167C2^2 | 192,904 |
(C6×Q8).168C22 = C3×D4.5D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 4 | (C6xQ8).168C2^2 | 192,906 |
(C6×Q8).169C22 = C3×C23.47D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).169C2^2 | 192,916 |
(C6×Q8).170C22 = C3×C23.48D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).170C2^2 | 192,917 |
(C6×Q8).171C22 = C3×C23.20D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).171C2^2 | 192,918 |
(C6×Q8).172C22 = C3×C4.SD16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).172C2^2 | 192,920 |
(C6×Q8).173C22 = C3×C42.78C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).173C2^2 | 192,921 |
(C6×Q8).174C22 = C3×C42.28C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).174C2^2 | 192,922 |
(C6×Q8).175C22 = C3×C42.30C22 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).175C2^2 | 192,924 |
(C6×Q8).176C22 = C3×C8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).176C2^2 | 192,925 |
(C6×Q8).177C22 = C3×C4⋊Q16 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).177C2^2 | 192,927 |
(C6×Q8).178C22 = C3×C8.12D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).178C2^2 | 192,928 |
(C6×Q8).179C22 = C3×C8⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).179C2^2 | 192,929 |
(C6×Q8).180C22 = C3×C8.2D4 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).180C2^2 | 192,930 |
(C6×Q8).181C22 = C3×C22.33C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).181C2^2 | 192,1428 |
(C6×Q8).182C22 = C3×C22.36C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).182C2^2 | 192,1431 |
(C6×Q8).183C22 = C3×C23.41C23 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).183C2^2 | 192,1433 |
(C6×Q8).184C22 = C3×D4⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).184C2^2 | 192,1443 |
(C6×Q8).185C22 = C3×C22.49C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).185C2^2 | 192,1444 |
(C6×Q8).186C22 = C3×Q82 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 192 | | (C6xQ8).186C2^2 | 192,1447 |
(C6×Q8).187C22 = C3×C22.56C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).187C2^2 | 192,1451 |
(C6×Q8).188C22 = C3×C22.57C24 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | | (C6xQ8).188C2^2 | 192,1452 |
(C6×Q8).189C22 = C3×Q8○D8 | φ: C22/C1 → C22 ⊆ Out C6×Q8 | 96 | 4 | (C6xQ8).189C2^2 | 192,1467 |
(C6×Q8).190C22 = Q8⋊4Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).190C2^2 | 192,579 |
(C6×Q8).191C22 = Q8⋊5Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).191C2^2 | 192,580 |
(C6×Q8).192C22 = Q8.5Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).192C2^2 | 192,581 |
(C6×Q8).193C22 = C4×Q8⋊2S3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).193C2^2 | 192,584 |
(C6×Q8).194C22 = C42.56D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).194C2^2 | 192,585 |
(C6×Q8).195C22 = Q8⋊2D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).195C2^2 | 192,586 |
(C6×Q8).196C22 = Q8.6D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).196C2^2 | 192,587 |
(C6×Q8).197C22 = C4×C3⋊Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).197C2^2 | 192,588 |
(C6×Q8).198C22 = C42.59D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).198C2^2 | 192,589 |
(C6×Q8).199C22 = C12⋊7Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).199C2^2 | 192,590 |
(C6×Q8).200C22 = C2×Q8⋊2Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).200C2^2 | 192,783 |
(C6×Q8).201C22 = (C6×Q8)⋊6C4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).201C2^2 | 192,784 |
(C6×Q8).202C22 = C2×C12.10D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).202C2^2 | 192,785 |
(C6×Q8).203C22 = (C3×Q8)⋊13D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).203C2^2 | 192,786 |
(C6×Q8).204C22 = (C2×C6)⋊8Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).204C2^2 | 192,787 |
(C6×Q8).205C22 = C4○D4⋊3Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).205C2^2 | 192,791 |
(C6×Q8).206C22 = C4○D4⋊4Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).206C2^2 | 192,792 |
(C6×Q8).207C22 = (C6×D4).16C4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).207C2^2 | 192,796 |
(C6×Q8).208C22 = (C3×D4)⋊14D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).208C2^2 | 192,797 |
(C6×Q8).209C22 = (C3×D4).32D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).209C2^2 | 192,798 |
(C6×Q8).210C22 = Q8×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).210C2^2 | 192,1125 |
(C6×Q8).211C22 = Dic6⋊10Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).211C2^2 | 192,1126 |
(C6×Q8).212C22 = C42.122D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).212C2^2 | 192,1127 |
(C6×Q8).213C22 = Q8⋊6Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).213C2^2 | 192,1128 |
(C6×Q8).214C22 = Q8⋊7Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).214C2^2 | 192,1129 |
(C6×Q8).215C22 = C4×S3×Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).215C2^2 | 192,1130 |
(C6×Q8).216C22 = C42.125D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).216C2^2 | 192,1131 |
(C6×Q8).217C22 = C4×Q8⋊3S3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).217C2^2 | 192,1132 |
(C6×Q8).218C22 = C42.126D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).218C2^2 | 192,1133 |
(C6×Q8).219C22 = Q8×D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).219C2^2 | 192,1134 |
(C6×Q8).220C22 = Q8⋊6D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).220C2^2 | 192,1135 |
(C6×Q8).221C22 = Q8⋊7D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).221C2^2 | 192,1136 |
(C6×Q8).222C22 = C42.232D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).222C2^2 | 192,1137 |
(C6×Q8).223C22 = D12⋊10Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).223C2^2 | 192,1138 |
(C6×Q8).224C22 = C42.131D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).224C2^2 | 192,1139 |
(C6×Q8).225C22 = C42.132D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).225C2^2 | 192,1140 |
(C6×Q8).226C22 = C42.133D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).226C2^2 | 192,1141 |
(C6×Q8).227C22 = C42.134D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).227C2^2 | 192,1142 |
(C6×Q8).228C22 = C42.135D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).228C2^2 | 192,1143 |
(C6×Q8).229C22 = C42.136D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).229C2^2 | 192,1144 |
(C6×Q8).230C22 = C22×C3⋊Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).230C2^2 | 192,1368 |
(C6×Q8).231C22 = C2×Dic3⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).231C2^2 | 192,1369 |
(C6×Q8).232C22 = C2×Q8×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).232C2^2 | 192,1370 |
(C6×Q8).233C22 = C6.422- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).233C2^2 | 192,1371 |
(C6×Q8).234C22 = Q8×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).234C2^2 | 192,1374 |
(C6×Q8).235C22 = C6.442- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).235C2^2 | 192,1375 |
(C6×Q8).236C22 = C6.452- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).236C2^2 | 192,1376 |
(C6×Q8).237C22 = C2×Q8.13D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).237C2^2 | 192,1380 |
(C6×Q8).238C22 = C2×Q8.14D6 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).238C2^2 | 192,1382 |
(C6×Q8).239C22 = C6.1042- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).239C2^2 | 192,1383 |
(C6×Q8).240C22 = C6.1052- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).240C2^2 | 192,1384 |
(C6×Q8).241C22 = Dic3×C4○D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).241C2^2 | 192,1385 |
(C6×Q8).242C22 = C6.1442+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).242C2^2 | 192,1386 |
(C6×Q8).243C22 = C6.1072- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).243C2^2 | 192,1390 |
(C6×Q8).244C22 = (C2×C12)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).244C2^2 | 192,1391 |
(C6×Q8).245C22 = C6.1082- 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).245C2^2 | 192,1392 |
(C6×Q8).246C22 = C6.1482+ 1+4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).246C2^2 | 192,1393 |
(C6×Q8).247C22 = C2×Q8○D12 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).247C2^2 | 192,1522 |
(C6×Q8).248C22 = C6×C4.10D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).248C2^2 | 192,845 |
(C6×Q8).249C22 = C3×M4(2).8C22 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 48 | 4 | (C6xQ8).249C2^2 | 192,846 |
(C6×Q8).250C22 = C6×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).250C2^2 | 192,848 |
(C6×Q8).251C22 = C3×C23.24D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).251C2^2 | 192,849 |
(C6×Q8).252C22 = C3×C23.36D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).252C2^2 | 192,850 |
(C6×Q8).253C22 = C3×C23.38D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).253C2^2 | 192,852 |
(C6×Q8).254C22 = C12×SD16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).254C2^2 | 192,871 |
(C6×Q8).255C22 = C12×Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).255C2^2 | 192,872 |
(C6×Q8).256C22 = C3×SD16⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).256C2^2 | 192,873 |
(C6×Q8).257C22 = C3×Q16⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).257C2^2 | 192,874 |
(C6×Q8).258C22 = C3×Q8⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).258C2^2 | 192,881 |
(C6×Q8).259C22 = C3×D4⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).259C2^2 | 192,882 |
(C6×Q8).260C22 = C3×C22⋊Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).260C2^2 | 192,884 |
(C6×Q8).261C22 = C3×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).261C2^2 | 192,885 |
(C6×Q8).262C22 = C3×C4⋊SD16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).262C2^2 | 192,893 |
(C6×Q8).263C22 = C3×Q8⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).263C2^2 | 192,908 |
(C6×Q8).264C22 = C3×C4.Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).264C2^2 | 192,910 |
(C6×Q8).265C22 = C3×Q8.Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).265C2^2 | 192,912 |
(C6×Q8).266C22 = C3×C23.36C23 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).266C2^2 | 192,1418 |
(C6×Q8).267C22 = C6×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).267C2^2 | 192,1420 |
(C6×Q8).268C22 = C3×C22.26C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).268C2^2 | 192,1421 |
(C6×Q8).269C22 = C3×C23.37C23 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).269C2^2 | 192,1422 |
(C6×Q8).270C22 = C3×C23.38C23 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).270C2^2 | 192,1425 |
(C6×Q8).271C22 = C3×C22.31C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).271C2^2 | 192,1426 |
(C6×Q8).272C22 = C3×C22.35C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).272C2^2 | 192,1430 |
(C6×Q8).273C22 = C3×D4⋊6D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).273C2^2 | 192,1436 |
(C6×Q8).274C22 = C3×Q8⋊5D4 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).274C2^2 | 192,1437 |
(C6×Q8).275C22 = C3×D4×Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).275C2^2 | 192,1438 |
(C6×Q8).276C22 = C3×C22.46C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).276C2^2 | 192,1441 |
(C6×Q8).277C22 = C3×C22.50C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).277C2^2 | 192,1445 |
(C6×Q8).278C22 = C3×Q8⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).278C2^2 | 192,1446 |
(C6×Q8).279C22 = C3×C22.53C24 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).279C2^2 | 192,1448 |
(C6×Q8).280C22 = C2×C6×Q16 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 192 | | (C6xQ8).280C2^2 | 192,1460 |
(C6×Q8).281C22 = C6×C4○D8 | φ: C22/C2 → C2 ⊆ Out C6×Q8 | 96 | | (C6xQ8).281C2^2 | 192,1461 |
(C6×Q8).282C22 = Q8×C2×C12 | φ: trivial image | 192 | | (C6xQ8).282C2^2 | 192,1405 |
(C6×Q8).283C22 = C12×C4○D4 | φ: trivial image | 96 | | (C6xQ8).283C2^2 | 192,1406 |
(C6×Q8).284C22 = C3×C23.32C23 | φ: trivial image | 96 | | (C6xQ8).284C2^2 | 192,1408 |
(C6×Q8).285C22 = C3×C23.33C23 | φ: trivial image | 96 | | (C6xQ8).285C2^2 | 192,1409 |
(C6×Q8).286C22 = C3×Q8⋊6D4 | φ: trivial image | 96 | | (C6xQ8).286C2^2 | 192,1439 |